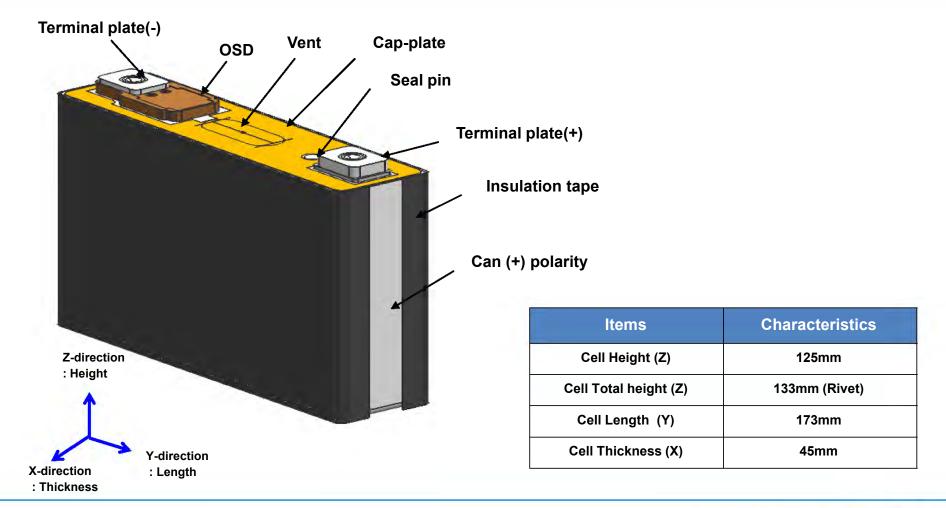
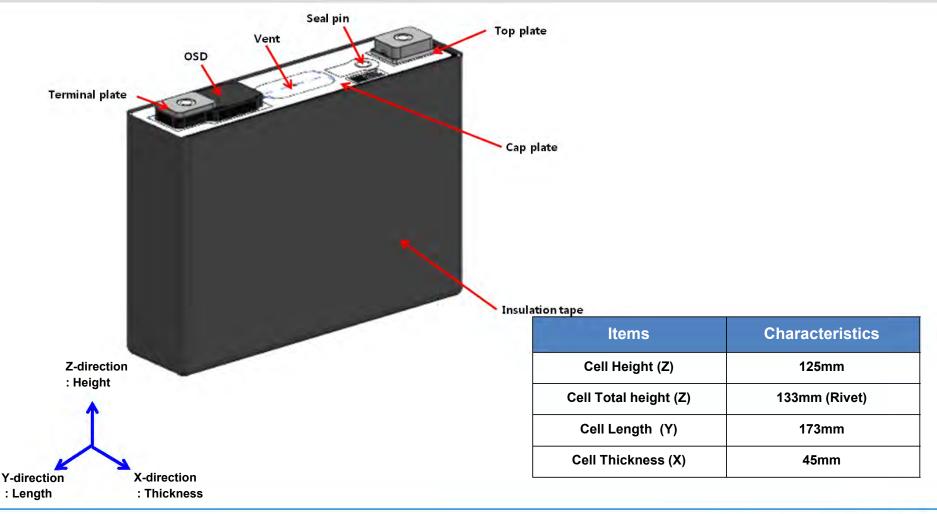
Introduction of Samsung SDI's 94Ah cells

31th Dec. 2015



Contents

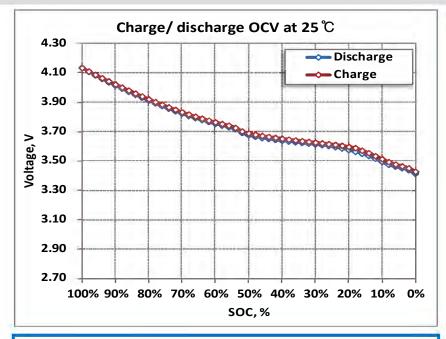

- → Cell design and specification, 94Ah 60mAh version update
 - Cell appearance and cell design summary
 - Cell specification
 - Safety and environmental performance
- Appendix)
 - Performance : Rated capacity, OCV, power & DC-IR, I-V plot
 - Life: Cycle/Calendar life, fast charge, self discharge
 - Compression and swelling force
 - Operating and safety limit
 - Thermal properties and modeling
 - Outgoing data

Cell Appearance 94Ah(1)

Cell Appearance 94Ah(2)_ 5 side taping

Summary of cell performance

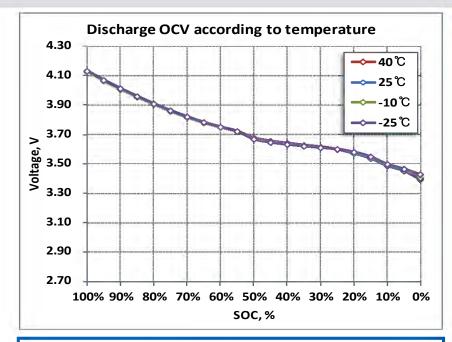
	Cell type						
	Capacity (min.))	1/3C rate, 25°C, Discharge	Ah	94		
Energy	Energy (min.)		1/3C rate, 25°C, Discharge	Wh	345		
	Specific energy	/ (min.)	1/3C rate, 25 C, Discharge	Wh/kg	165		
	Nominal voltag	е	-	V	3.68		
	Size		Width x height x Thickness	mm	173 x 125 x 45		
General information	Cell weight (ma	ax.)	Bare cell	kg	2.1		
	Operating volta	age	-	V	2.7 ~ 4.15		
	Operating temperature		-	°C	-40 ~ 60		
	Discharge	Continuous	25°C	A	150		
Operation	Discharge	Peak	25°C	A	409		
current	Charge	Continuous	25°C	A	72		
	Gliaiye	Peak	25°C	A	270		
	5sec	Resistance	RT, 50% SOC	mOhm	0.75		
Power capability	discharge	Specific power capability	RT, 50% SOC (at V_min)	W	3,500		
i owei capability	30sec	Resistance	RT, 50% SOC	mOhm	0.99		
	discharge	Specific power capability	RT, 50% SOC (at V_min)	W	2,600		
	Cycle life	•	0.5C/1C, RT, EOL80%/EOL70%	cycles	3,200 / 5,200		
Life	Cycle IIIe		1C/1C, 45°C, EOL80%/EOL70%	cycles	1,500 / 2,500		
	Calendar life		SOC100%, 25°C, EOL80%/EOL70%	years	17 / 26		
Swelling force	Max. force at E	OL	0.5C/1C, RT, rigid jig	N	< 25000		
	China hom	nologation	GB/T certificate	PASS	PASS estimation		
	Transpo	ortation	UN 38.9	PASS	PASS estimation		



Performance Test OCV, Rate Capability, DC-IR and Power

Charge and discharge OCV

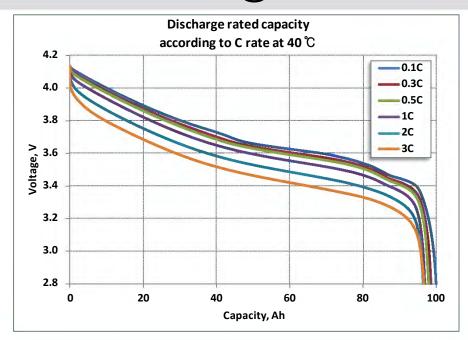
2% interval at 25°C

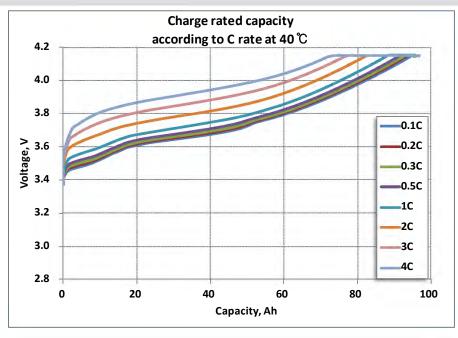

- 1.Standard charge at RT (SOC = 100%), rest 3 hr
- 2.Adjustment of SOC: Discharge by 2% SOC with 1/3C, rest 3 hr
- 3.Repeat step 2 until SOC=0% or until to meet limit voltage
- Charge method
- 1.Standard discharge at RT (SOC = 0%), rest 3 hr
- 2.Adjustment of SOC: Charge by 2% SOC with 1/3C, rest 3 hr
- 3.Repeat step 2 until SOC=100or until to meet limit voltage

ocv	Discharge @ 25℃	Charge @ 25℃
100%	4.136	4.133
90%	4.016	4.022
80%	3.913	3.921
70%	3.825	3.833
60%	3.756	3.765
50%	3.678	3.690
40%	3.641	3.653
30%	3.615	3.627
20%	3.579	3.598
10%	3.499	3.517
0%	3.420	3.433

Discharge OCV

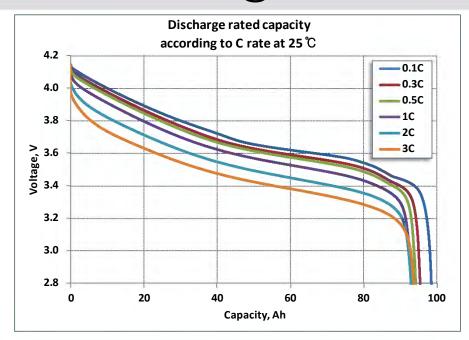
5% interval at 25 °C / -25 °C

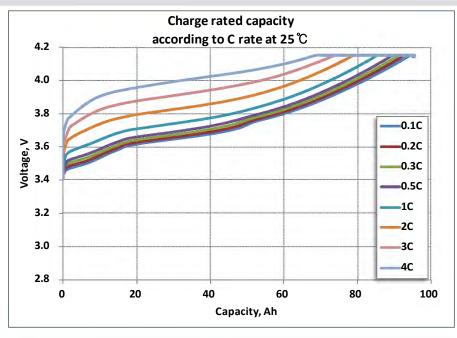



- Discharge method
- 1.Standard charge at RT (SOC = 100%), rest 3 hrs
- 2.Temperature change (25℃ to -25℃)
- 3.Soaking(5h), rest 1hr
- 4. Room Temperature Change (-25 ℃ to 25 ℃, soaking 2hrs)
- 5.Adjustment of SOC: Discharge by 5% SOC with 1/3C , rest 3 hrs
- 6.Repeat step 2~5 until SOC=0% or until to meet limit voltage

ocv	Discharge @ 40℃	Discharge @ 25℃	Discharge @ -10 ℃	Discharge @ -25 ℃
100%	4.129	4.129	4.131	4.132
90%	4.009	4.010	4.012	4.013
80%	3.9076	3.907	3.909	3.910
70%	3.818	3.819	3.820	3.821
60%	3.750	3.751	3.751	3.752
50%	3.677	3.676	3.671	3.669
40%	3.641	3.641	3.634	3.647
30%	3.616	3.614	3.611	3.611
20%	3.572	3.574	3.579	3.581
10%	3.452	3.490	3.496	3.499
0%	3.395	3.404	3.422	3.429

0.1C ~4C rates @ 40 °C

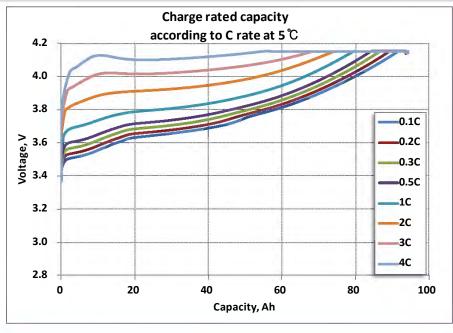



C-rate		0.1C	0.3C	0.5C	1C	2C	3C
	Capacity	100.2 Ah	98.8 Ah	98.1 Ah	97.0 Ah	96.6 Ah	96.9 Ah
Discharge	% (vs.1/3C)	101.40%	100.00%	99.30%	98.20%	97.80%	98.10%
Disch	Energy (Wh)	370 Wh	363 Wh	360 Wh	352 Wh	345 Wh	339 Wh
	% (vs.1/3C)	101.80%	100.00%	99.00%	97.00%	94.90%	93.40%

	C-rate		0.1C	0.2C	0.3C	0.5C	1C	2C	3C	4C
	Charge (CC/CV)	Capacity	95.5 Ah	95.4 Ah	95.5 Ah	95.6 Ah	95.7 Ah	95.8 Ah	95.9 Ah	96.9 Ah
		% (vs.1/3C)	100.00%	99.90%	100.00%	100.10%	100.20%	100.30%	100.40%	101.50%
	Charge (CC)	Capacity	94.8 Ah	93.7 Ah	92.4 Ah	91.6 Ah	88.2 Ah	81.8 Ah	76.5 Ah	72.2 Ah
		% (vs.1/3C)	102.60%	101.40%	100.00%	99.10%	95.40%	88.50%	82.80%	78.20%

0.1C ~4C rates @ 25 °C

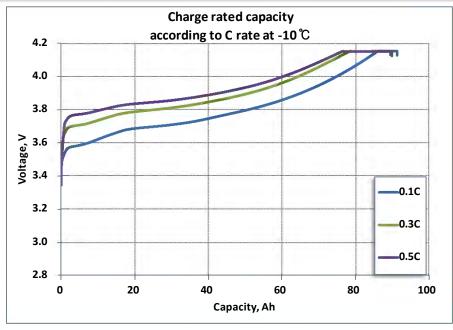



C-	C-rate		0.3C	0.5C	1C	2C	3C
C	Capacity	98.6 Ah	95.5 Ah	94.4 Ah	93.1 Ah	93.2 Ah	93.9 Ah
Discharge	% (vs.1/3C)	103.30%	100.00%	98.80%	97.50%	97.60%	98.40%
Discl	Energy (Wh)	365 Wh	351 Wh	346 Wh	337 Wh	330 Wh	326 Wh
	% (vs.1/3C)	103.80%	100.00%	98.40%	95.90%	94.00%	92.80%

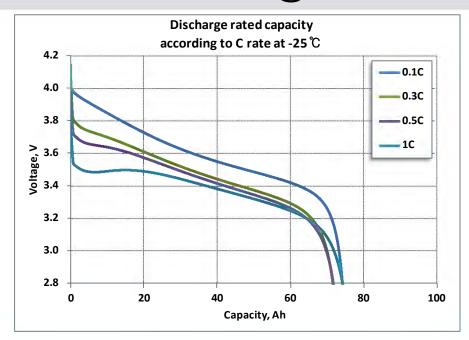
C-I	rate	0.1C	0.2C	0.3C	0.5C	1C	2C	3C	4C
Charge (CC/CV)	Capacity	95.3 Ah	95.1 Ah	95.1 Ah	95.1 Ah	95.2 Ah	95.3 Ah	95.5 Ah	95.6 Ah
	% (vs.1/3C)	100.20%	100.00%	100.00%	100.00%	100.00%	100.20%	100.40%	100.50%
Charge (CC)	Capacity	94.2 Ah	92.4 Ah	90.8 Ah	89.2 Ah	85.0 Ah	78.6 Ah	73.3 Ah	68.0 Ah
Cha (C	% (vs.1/3C)	103.70%	101.80%	100.00%	98.30%	93.60%	86.60%	80.70%	74.90%

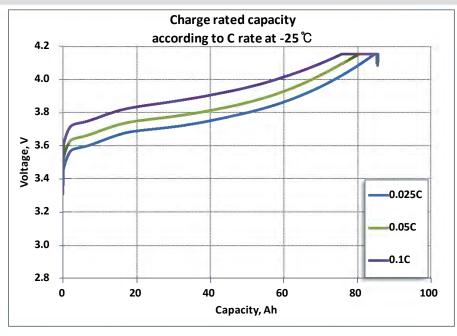
0.1C ~4C rates @ 5°C

C-	C-rate		0.3C	0.5C	1C	2C	3C
	Capacity	92.1 Ah	87.5 Ah	86.2 Ah	85.6 Ah	87.5 Ah	89.2 Ah
narge	% (vs.1/3C)	105.30%	100.00%	98.60%	97.80%	100.00%	101.90%
Discl	(vs.1/3C) Energy (Wh)	340 Wh	320 Wh	313 Wh	305 Wh	303 Wh	301 Wh
	% (vs.1/3C)	106.50%	100.00%	97.90%	95.50%	94.80%	94.00%

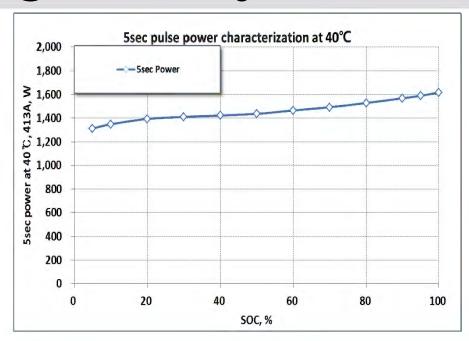

C-I	rate	0.1C	0.2C	0.3C	0.5C	1C	2C	3C	4C
Charge (CC/CV)	Capacity	93.8 Ah	93.7 Ah	93.7 Ah	93.7 Ah	93.8 Ah	94.0 Ah	94.3 Ah	94.3 Ah
Cha (CC/	% (vs.1/3C)	100.10%	100.00%	100.00%	100.00%	100.00%	100.30%	100.60%	100.60%
Charge (CC)	Capacity	91.6 Ah	88.9 Ah	86.6 Ah	84.0 Ah	79.1 Ah	73.3 Ah	65.3 Ah	53.1 Ah
Cha C)	% (vs.1/3C)	105.80%	102.70%	100.00%	97.10%	91.40%	84.70%	75.50%	61.40%

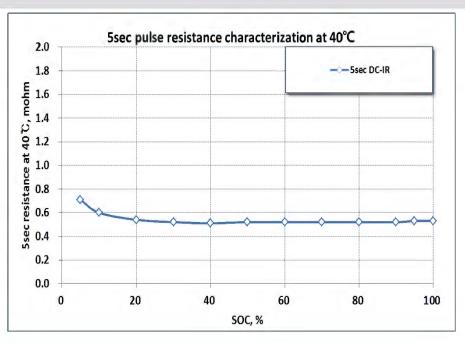
0.1C ~2C rates @ -10 °C


C-	rate	0.1C	0.3C	0.5C	1C	2C
	Capacity	84.2 Ah	79.9 Ah	79.7 Ah	81.7 Ah	85.7 Ah
narge	% (vs.1/3C)	105.40%	100.00%	99.80%	102.20%	107.30%
Discl	objection (vs.1/3C) Energy (Wh)	309 Wh	287 Wh	283 Wh	285 Wh	289 Wh
	% (vs.1/3C)	107.70%	100.00%	98.90%	99.40%	101.00%

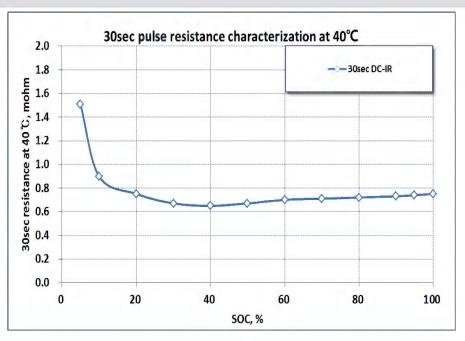

C-	rate	0.1C	0.3C	0.5C	
Charge (CC/CV)	Capacity 91.4 Ah		89.9 Ah	89.5 Ah	
CC)	% (vs.1/3C)	101.70%	100.00%	99.60%	
Charge (CC)	Capacity	86.0 Ah	77.9 Ah	75.8 Ah	
Cha C)	% (vs.1/3C)	110.50%	100.00%	97.30%	

0.025C ~1C rates @ -25°C


C-	rate	0.1C	0.3C	0.5C	1C
0	Capacity	74.6 Ah	72.0 Ah	72.3 Ah	75.0 Ah
	% (vs.1/3C)	96.50%	100.00%	100.40%	104.10%
Discl	Energy (Wh)	267 Wh	250 Wh	248 Wh	252 Wh
	% (vs.1/3C)	93.40%	100.00%	99.30%	100.80%

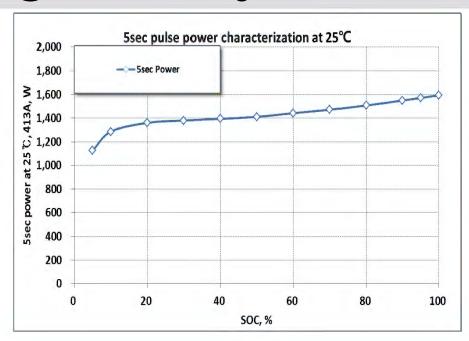

C-	rate	0.025C	0.05C	0.1C
Charge (CC/CV)	Capacity	85.5 Ah	85.3 Ah	85.6 Ah
CC)	% (vs.1/3C)	113.40%	113.00%	100.00%
Charge (CC)	Capacity	84.7 Ah	80.4 Ah	75.4 Ah
Cha (C	% (vs.1/3C)	112.30%	106.50%	100.00%

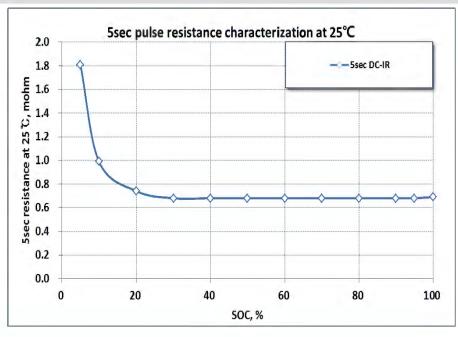
@ 5sec discharge, 40°C, 413A



	SOC (%)	100	95	90	80	70	60	50	40	30	20	10	5	Max current
narge	Resistance (mΩ)	0.53	0.53	0.52	0.52	0.52	0.52	0.52	0.51	0.52	0.54	0.60	0.71	413 A
Disch	Power (W)	1617	1589	1568	1528	1492	1465	1436	1422	1410	1393	1348	1312	1107

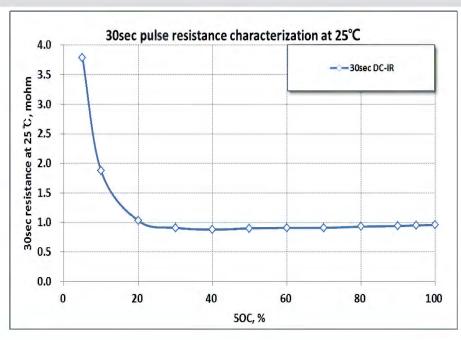
@ 30sec discharge, 40°C, 294A



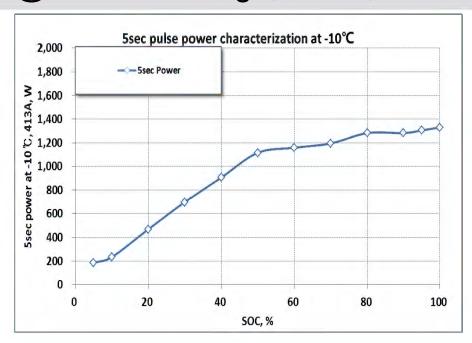


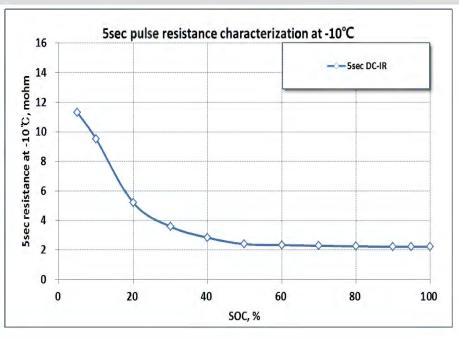
	SOC (%)	100	95	90	80	70	60	50	40	30	20	10	5	Max current
narge	Resistance (mΩ)	0.75	0.74	0.73	0.72	0.71	0.70	0.67	0.65	0.67	0.75	0.90	1.51	294 A
Disch	Power (W)	1151	1131	1117	1089	1065	1046	1027	1018	1009	992	955	889	207 A

@ 5sec discharge, 25°C, 413A



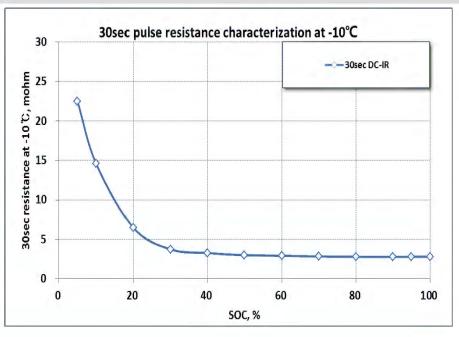
	SOC (%)	100	95	90	80	70	60	50	40	30	20	10	5	Max current
Discharge	Resistance (mΩ)	0.69	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.74	0.99	1.81	413 A
Disch	Power (W)	1593	1571	1549	1507	1471	1442	1411	1394	1380	1360	1286	1125	413 A


@ 30sec discharge, 25°C, 294A

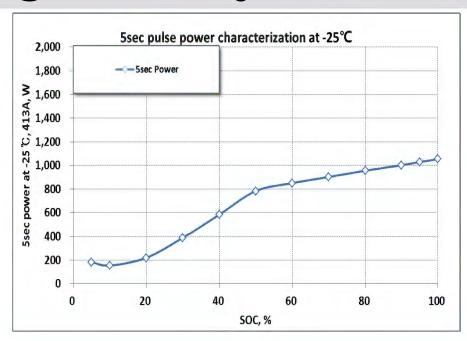


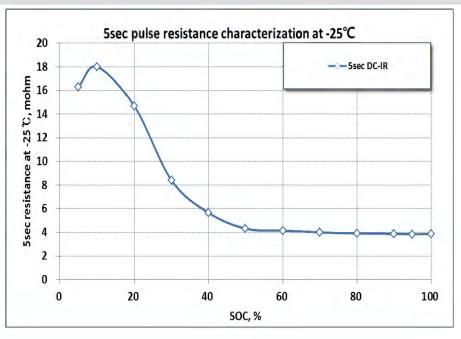
	SOC (%)	100	95	90	80	70	60	50	40	30	20	10	5	Max current
Discharge	Resistance (mΩ)	0.96	0.95	0.94	0.93	0.91	0.91	0.90	0.88	0.91	1.03	1.88	3.79	294 A
Disch	Power (W)	1135	1119	1104	1075	1050	1030	1010	999	988	969	873	550	234 A

@ 5sec discharge, -10°C, 413A



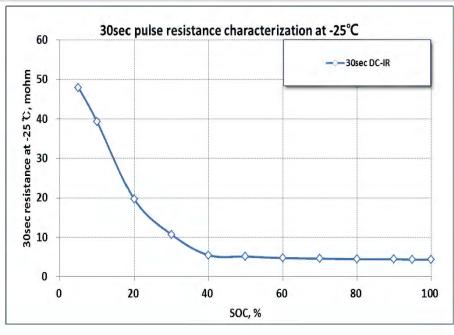
	SOC (%)	100	95	90	80	70	60	50	40	30	20	10	5	Max current
narge	Resistance (mΩ)	2.22	2.22	2.22	2.25	2.29	2.34	2.40	2.84	3.59	5.20	9.53	11.30	413 A
Disch	Power (W)	1330	1305	1282	1282	1194	1158	1115	906	697	467	233	185	413 A


@ 30sec discharge, -10°C, 294A



	SOC (%)	100	95	90	80	70	60	50	40	30	20	10	5	Max current
narge	Resistance (mΩ)	2.77	2.77	2.76	2.77	2.81	2.89	2.98	3.24	3.72	6.47	14.63	22.52	294 A
Disch	Power (W)	978	960	945	914	885	858	828	794	673	376	152	93	234 A

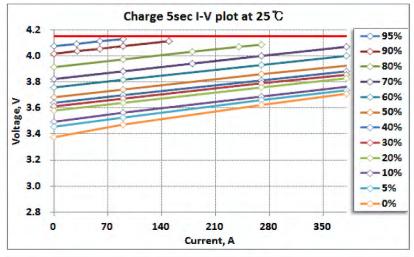
@ 5sec discharge, -25°C, 413A

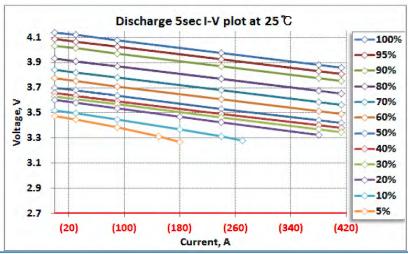


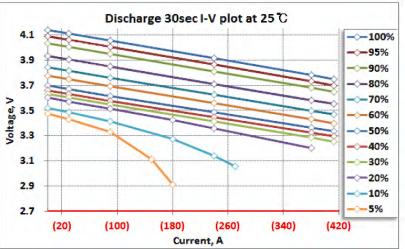
	SOC (%)	100	95	90	80	70	60	50	40	30	20	10	5	Max current
Discharge	Resistance (mΩ)	3.85	3.84	3.87	3.90	4.00	4.14	4.32	5.66	8.41	14.68	18.01	16.31	413 A
Disch	Power (W)	1053	1029	1002	955	902	850	783	584	387	218	153	181	713A

@ 30sec discharge, -25°C, 294A

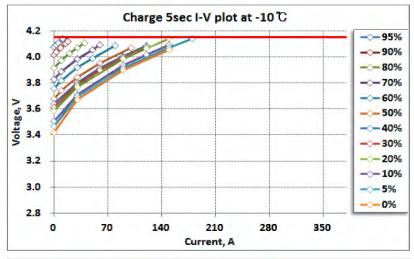
	SOC (%)	100	95	90	80	70	60	50	40	30	20	10	5	Max current
Discharge	Resistance (mΩ)	4.29	4.31	4.39	4.42	4.54	4.71	5.09	5.44	10.69	19.61	39.36	48.00	294 A
Disch	Power (W)	846	826	804	771	736	701	644	607	305	161	78	62	207 A

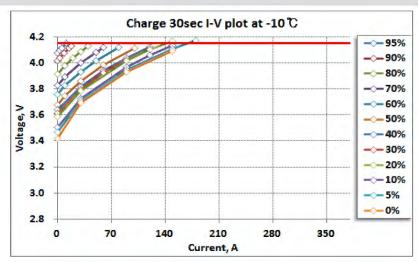

Additional Parameter Test I-V plot

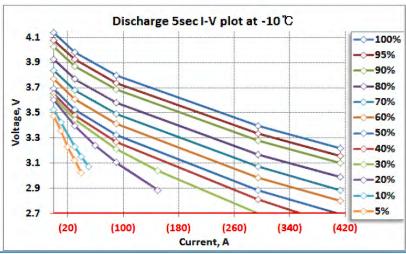


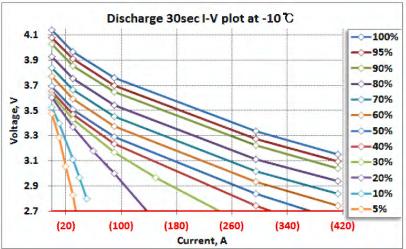

Pulse power characterization test

I-V plot at 5sec, 30sec at 25 ℃

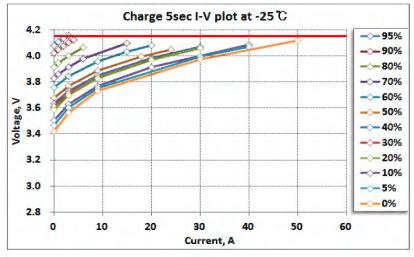




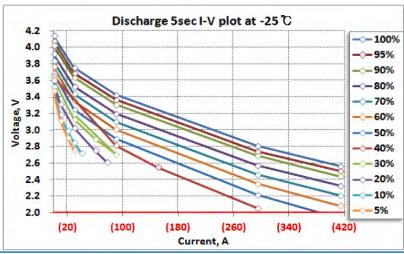


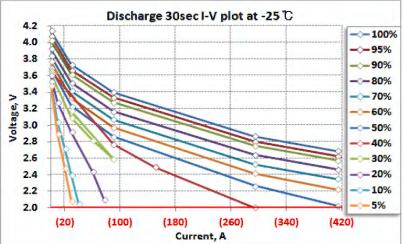

Pulse power characterization test

I-V plot at 5sec, 30sec at -10 ℃

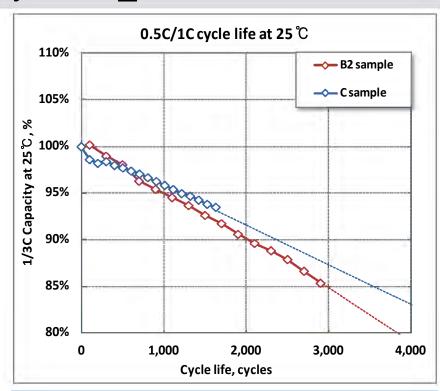


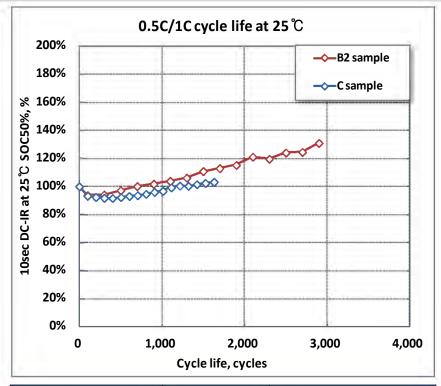





Pulse power characterization test

I-V plot at 5sec, 30sec at -25 °C



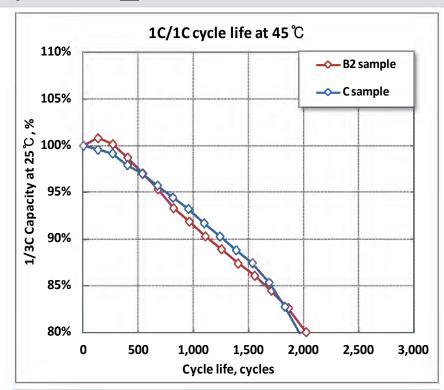

Cycle / Calendar life

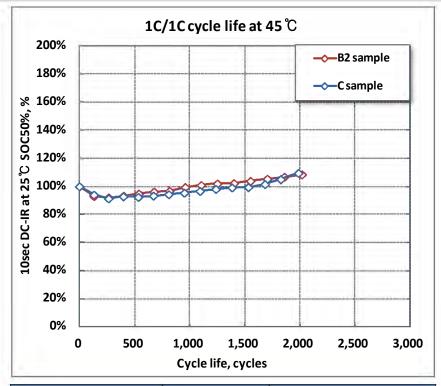
Life status

Cycle life_0.5C/1C at 25 ℃

*** RPT condition**

Charge: 1/3C Vmax CCCV charge, 1/50C cut off rest 30 min

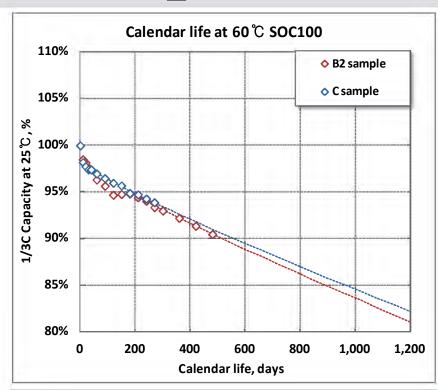

Discharge: 1/3C CC discharge Vmin cut off rest 60 min at 25 ℃

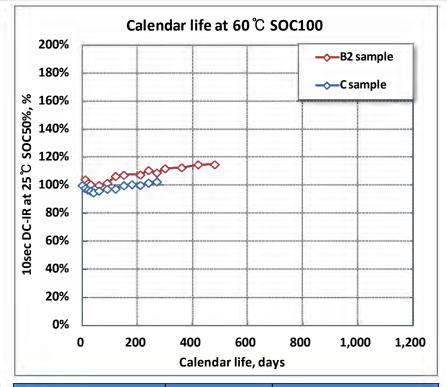

Sample	Vol. range	Estimated life at EOL
94Ah, B2 sample	4.15~2.7V	> 3,200 cycle
94Ah, C sample	4.15~2.7V	↑

Life status

Cycle life_1C/1C at 45°C

*** RPT condition**


Charge: 1/3C Vmax CCCV charge, 1/50C cut off rest 30 min


Discharge: 1/3C CC discharge Vmin cut off rest 60 min at 25 ℃

Sample	Vol. range	Estimated life at EOL
94Ah, B2 sample	4.15~2.7V	1,700 cycle
94Ah, C sample	4.15~2.7V	↑

Life status

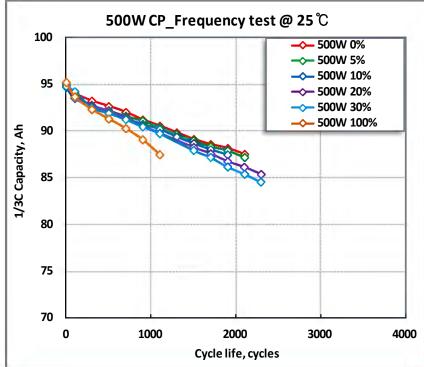
Calendar life_SOC100% at 60 ℃

Sample Vol. range Estimated life at EOL 94Ah, B2 sample 4.15~2.7V > 2.50 year 94Ah, C sample 4.15~2.7V ↑

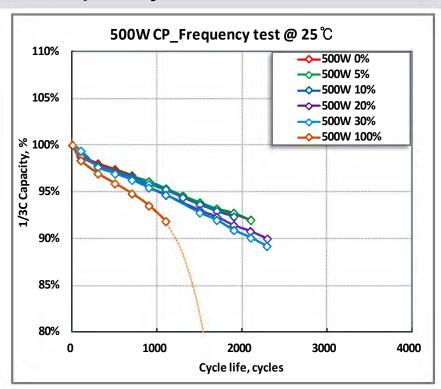
***** RPT condition

Charge: 1/3C Vmax CCCV charge, 1/50C cut off rest 30 min

Discharge : 1/3C CC discharge Vmin cut off rest 60 min at 25 $^{\circ}\mathrm{C}$



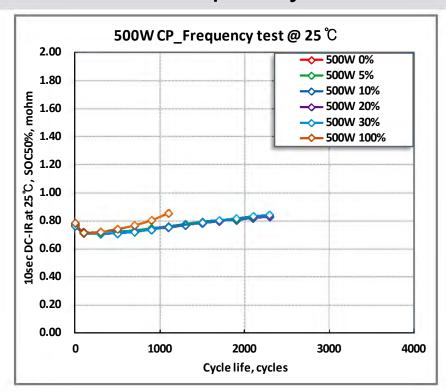
Evaluation of Fast Charging

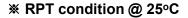


Evaluation of fast charging

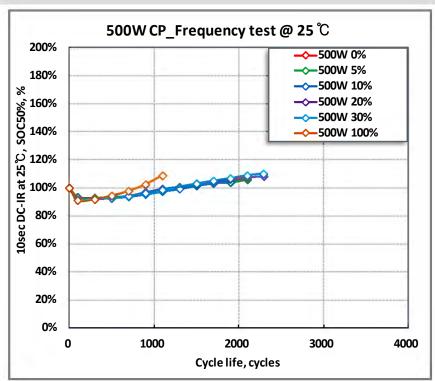
500W CP / Frequency effect / RPT capacity

#	Ref. charging	Fast charging	Frequency of 500W	Discharge
Case1			0%	
Case2			5%	
Case3	0.5C	500W	10%	1.0C
Case4	0.00	00011	20%	1.00
Case5			30%	
Case6			100%	


Detailed charging condition


- 0%: 0.5C charge only
- 5%: 500W CP charge(1 cycles) + 0.5C charge(19 cycles)
- 10%: 500W CP charge(2 cycles) + 0.5C charge(18 cycles)
- 20%: 500W CP charge(4 cycles) + 0.5C charge(16 cycles)
- 30%: 500W CP charge(6 cycles) + 0.5C charge(14 cycles)
- 100% : 500W CP charge only

Evaluation of fast charging

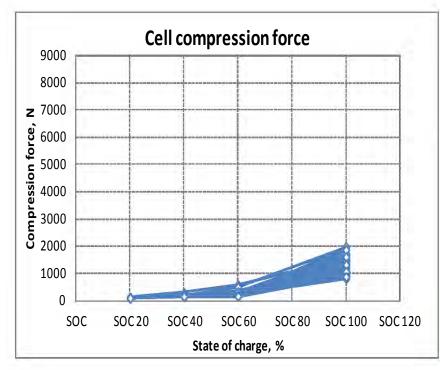

500W CP / Frequency effect / 10sec DC-IR

Charge : 1/3C 4.15V CCCV charge, 1/50C cut off rest 30 min

Discharge: 1/3C CC discharge 2.7V cut off rest 60 min

Summary of fast charging

- 100% usage of 500W CP can cause abnormal capacity degradation, so it can not be allowed.
- But by limiting the frequency of 500W CP, this fast charging can be applicable to 94Ah cell.



Compression force and Swelling force

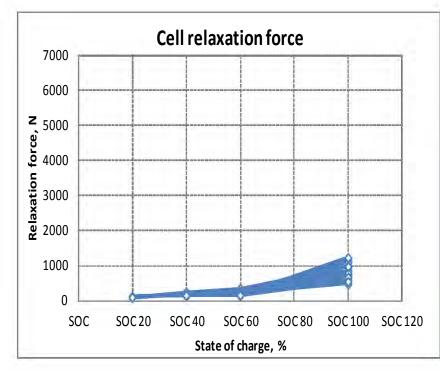
Compression force

SOC dependency, Single cell

✓ Avg. cell compression force: 1433N @SOC100%

Test conditions

- Target thickness: 45 mm without insulation tape.


- Compression velocity: 0.02 mm/s

- Duration: 5 min

Cell No. SOC 20 SOC 40 SOC 60 SOC 100 #1 120 171 345 1350 #2 120 195 270 876 #3 135 195 306 1380 #4 129 198 210 939 #5 132 300 588 1560 #6 105 213 285 1203 #7 111 207 510 1980 #8 111 207 219 816 #9 120 195 201 1134 #10 102 186 327 1722 #11 105 192 183 1350 #12 120 201 213 1698 #13 90 171 174 1545 #14 114 189 210 1605 #15 129 222 210 1875 #16 <t< th=""><th>0 5 0 9 0 3 3 0 5 6</th></t<>	0 5 0 9 0 3 3 0 5 6
#2 120 195 270 876 #3 135 195 306 1380 #4 129 198 210 939 #5 132 300 588 1560 #6 105 213 285 1203 #7 111 207 510 1980 #8 111 207 219 816 #9 120 195 201 1134 #10 102 186 327 1722 #11 105 192 183 1350 #12 120 201 213 1698 #13 90 171 174 1545 #14 114 189 210 1605 #15 129 222 210 1875 #16 114 180 174 1296 #17 96 183 195 1512 #18 123 204 219 1743 #19 174 1545	60 9 00 13 10 60
#3 135 195 306 1380 #4 129 198 210 939 #5 132 300 588 1560 #6 105 213 285 1203 #7 111 207 510 1980 #8 111 207 219 816 #9 120 195 201 1134 #10 102 186 327 1722 #11 105 192 183 1350 #12 120 201 213 1698 #13 90 171 174 1545 #14 114 189 210 1605 #15 129 222 210 1875 #16 114 180 174 1296 #17 96 183 195 1512 #18 123 204 219 1743 #19 174 147	60 9 60 13 60 66
#4 129 198 210 939 #5 132 300 588 1560 #6 105 213 285 1203 #7 111 207 510 1980 #8 111 207 219 816 #9 120 195 201 1134 #10 102 186 327 1722 #11 105 192 183 1350 #12 120 201 213 1698 #13 90 171 174 1545 #14 114 189 210 1605 #15 129 222 210 1875 #16 114 180 174 1296 #17 96 183 195 1512 #18 123 204 219 1743 #19 117 147 198 1452	9 60 13 60 6
#5 132 300 588 1560 #6 105 213 285 1203 #7 111 207 510 1980 #8 111 207 219 816 #9 120 195 201 1134 #10 102 186 327 1722 #11 105 192 183 1350 #12 120 201 213 1698 #13 90 171 174 1545 #14 114 189 210 1605 #15 129 222 210 1875 #16 114 180 174 1296 #17 96 183 195 1512 #18 123 204 219 1743 #19 117 147 198 1452	13 13 160
#6 105 213 285 1203 #7 111 207 510 1980 #8 111 207 219 816 #9 120 195 201 1134 #10 102 186 327 1722 #11 105 192 183 1350 #12 120 201 213 1698 #13 90 171 174 1545 #14 114 189 210 1605 #15 129 222 210 1875 #16 114 180 174 1296 #17 96 183 195 1512 #18 123 204 219 1743 #19 117 147 198 1452	13 10 16
#7 111 207 510 1980 #8 111 207 219 816 #9 120 195 201 1134 #10 102 186 327 1722 #11 105 192 183 1350 #12 120 201 213 1698 #13 90 171 174 1545 #14 114 189 210 1605 #15 129 222 210 1875 #16 114 180 174 1296 #17 96 183 195 1512 #18 123 204 219 1743 #19 117 147 198 1452	6
#8 111 207 219 816 #9 120 195 201 1134 #10 102 186 327 1722 #11 105 192 183 1350 #12 120 201 213 1698 #13 90 171 174 1545 #14 114 189 210 1605 #15 129 222 210 1875 #16 114 180 174 1296 #17 96 183 195 1512 #18 123 204 219 1743 #19 117 147 198 1452	5
#9 120 195 201 1134 #10 102 186 327 1722 #11 105 192 183 1350 #12 120 201 213 1698 #13 90 171 174 1545 #14 114 189 210 1605 #15 129 222 210 1875 #16 114 180 174 1296 #17 96 183 195 1512 #18 123 204 219 1743 #19 117 147 198 1452	-
#10 102 186 327 1722 #11 105 192 183 1350 #12 120 201 213 1698 #13 90 171 174 1545 #14 114 189 210 1605 #15 129 222 210 1875 #16 114 180 174 1296 #17 96 183 195 1512 #18 123 204 219 1743 #19 117 147 198 1452	1
#11 105 192 183 1350 #12 120 201 213 1698 #13 90 171 174 1545 #14 114 189 210 1605 #15 129 222 210 1875 #16 114 180 174 1296 #17 96 183 195 1512 #18 123 204 219 1743 #19 117 147 198 1452	4
#12 120 201 213 1698 #13 90 171 174 1545 #14 114 189 210 1605 #15 129 222 210 1875 #16 114 180 174 1296 #17 96 183 195 1512 #18 123 204 219 1743 #19 117 147 198 1452	2
#13 90 171 174 1545 #14 114 189 210 1605 #15 129 222 210 1875 #16 114 180 174 1296 #17 96 183 195 1512 #18 123 204 219 1743 #19 117 147 198 1452	0
#14 114 189 210 1605 #15 129 222 210 1875 #16 114 180 174 1296 #17 96 183 195 1512 #18 123 204 219 1743 #19 117 147 198 1452	8
#15 129 222 210 1875 #16 114 180 174 1296 #17 96 183 195 1512 #18 123 204 219 1743 #19 117 147 198 1452	5
#16 114 180 174 1296 #17 96 183 195 1512 #18 123 204 219 1743 #19 117 147 198 1452	
#17 96 183 195 1512 #18 123 204 219 1743 #19 117 147 198 1452	-
#18 123 204 219 1743 #19 117 147 198 1452	
#19 117 147 198 1452	_
117 177 130 1102	
#20 10F 141 100 122C	
#21 106 171 201 1044	-
#22 120 144 162 1980	
#23 111 156 153 1674	
#24 111 141 183 1056	
#25 105 144 153 1683	-
#26 114 168 177 1740	
#27 120 156 180 1074	
#28 135 168 195 1875	
#29 102 153 162 885	
#30 105 162 171 1617	
Ltd. rAverves all rights eAth in the 182 232 1433	
ispos 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	37

Relaxation force

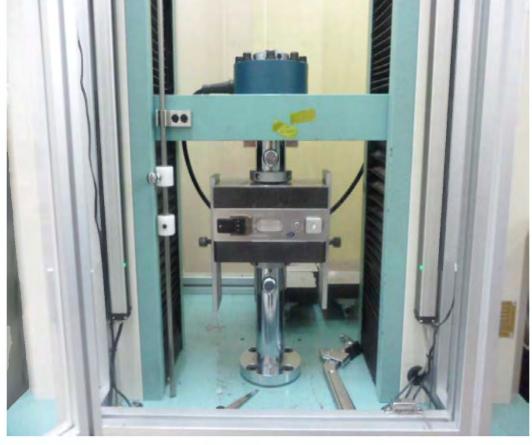
SOC dependency, Single cell

✓ Avg. cell relaxation force: 848N @SOC100%

Test conditions

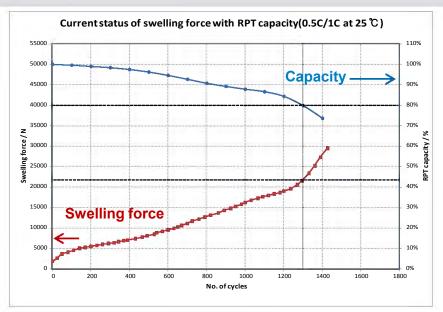
- Target thickness: 45 mm without insulation tape.

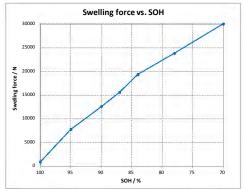
- Compression velocity: 0.02 mm/s

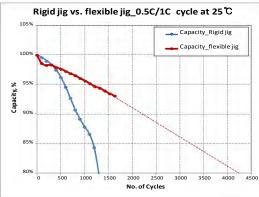

- Duration: 5 min

Relaxation force, N					
Cell No.	SOC 20	SOC 40	SOC 60	SOC 100	
#1	117	168	249	867	
#2	114	186	210	492	
#3	132	189	216	873	
#4	126	192	198	594	
#5	126	252	357	987	
#6	102	204	237	759	
#7	108	198	276	1110	
#8	108	201	210	477	
#9	117	192	192	729	
#10	99	180	225	972	
#11	102	186	174	720	
#12	117	195	201	1011	
#13	90	165	165	807	
#14	111	183	198	861	
#15	123	213	198	984	
#16	111	174	168	687	
#17	93	174	183	798	
#18	123	198	207	966	
#19	117	141	192	777	
#20	102	135	180	792	
#21	105	162	189	669	
#22	104	141	153	1176	
#23	108	147	144	1116	
#24	105	135	171	681	
#25	102	138	151	1098	
#26	111	159	168	996	
#27	114	150	171	672	
#28	132	159	180	1236	
#29	99	147	153	552	
#30	102	156	162	981	
	rights eVen in the	174	196	848	
disposal ક્રિપેch as d	opying ¹ 9:89	27.35	42.83	201.69	

Image of test equipment

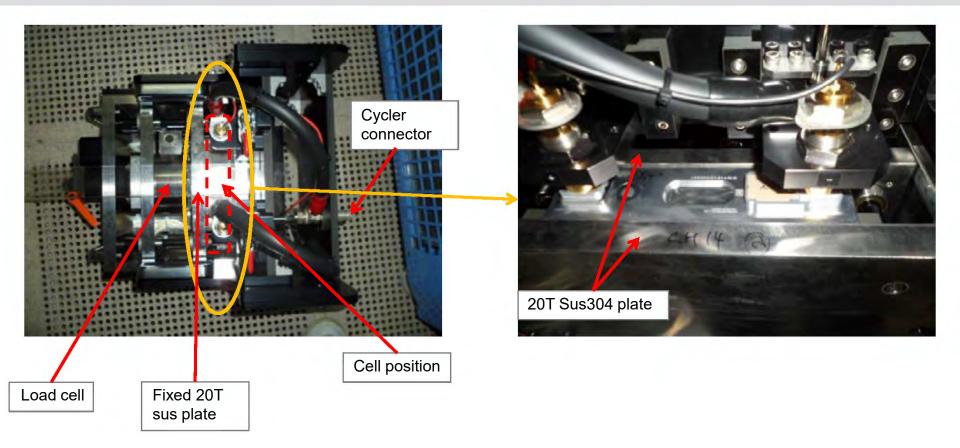

Compression force test




Swelling force

At 0.5C/1C cycle, 25°C with rigid jig

- ✓ In this test condition(w/o elongation and bulging), the measured swelling force of 94Ah cell is 22,000N at EOL80%.
- ✓ For current 94Ah sample, the estimated max. swelling force at EOL80% is **25,000N** (w/o elongation and bulging),

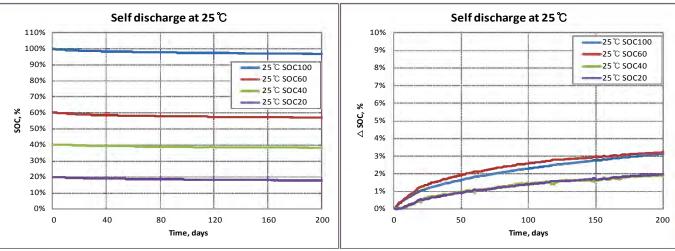


- ✓ Without elongation and bulging, the expected cycle life is <1,500cycles at EOL80%.
- ✓ To increase cycle life (and to decrease swelling force), SDI proposes to make a gap between cells in module.
- ✓ If cell is compressed severely(too rigid housing), separator can be compressed together. In this condition, capacity degradation can be accelerated.
- ✓ In opposite, too much gap can also make a problem. In this condition, cell thickness can increase and it can induce to increase gap between electrodes.
- ✓SDI' proposal is
- 0.5mm < gap+elogation@20kN max < 2.0mm

Image of rigid jig

SUS, 20mm thickness

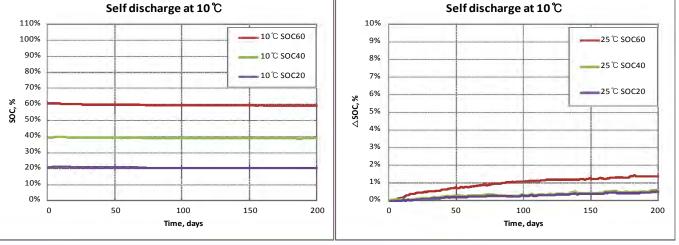
✓ Above test jig(SUS 20T) dose not allow elongation and bulging of cell.



Self discharge

Self discharge

At 25°C / 10°C



OCV drop during storage at each SOC and temperature condition was measured without recharging

soc, %	∆SOC after 200D		
	at 25℃	at 10 ℃	
SOC100	3.2%	-	
SOC60	3.3%	1.4%	
SOC40	1.9%	0.6%	
SOC20	2.0%	0.5%	

- At 25°C, 94Ah cell shows <5% of self discharge rate after 200D storage
- At 10 ℃, much lower SOC drop than 25 °C was observe. Below SOC60%, it is expected that <2% of self discharge at 200D storage

Operating and Safety limit

Operating current limit

Charge and Discharge

	Charge Operating Current Limit				
Temperature	Continuous Current Limit				
(°C)	I _{ch_max_peak}	Duration	I _{ch_max_continuous}		
	(A)	(sec)	I _{rms} (A)	Allowable usages over life	
60	270	100	107	100%	
50	270	100	107	100%	
40	270	100	96	100%	
35	270	100	84	100%	
30	270	100	73	100%	
25	270	100	61	100%	
20	270	100	51	100%	
15	270	100	41	100%	
10	270	100	32	100%	
5	270	100	24	100%	
0	237	100	18	100%	
-5	185	100	12	100%	
-10	125	100	7.2	100%	
-15	62	100	4.3	100%	
-20	33	100	2.7	100%	
-25	22	100	1.7	100%	
-30	7	100	1.0	100%	
-40	1	100	0.4	100%	

	D	ischarge Opera	ting Current Lim	it	
	Continuous Current Limit				
Temperature (℃)	I _{dch_max_peak} (A) Duration (sec)	Dti	I _{dch_max_continuous}		
		I _{rms} (A)	Allowable usages over life		
60	409	150	223	100%	
50	409	150	223	100%	
40	409	150	223	100%	
35	409	150	210	100%	
30	409	150	196	100%	
25	409	150	180	100%	
20	409	150	166	100%	
15	409	150	153	100%	
10	409	150	136	100%	
5	409	150	124	100%	
0	409	150	108	100%	
-5	409	150	93	100%	
-10	409	150	77	100%	
-15	409	150	74	100%	
-20	409	150	62	100%	
-25	409	150	57	100%	
-30	409	150	46	100%	
-40	409	150	33	100%	

[✓] **Continuous current limit(I_{max_continuous})**: Maximum continuous-current which can be used until capacity reaches to 80% of initial capacity without abnormal capacity degradation.

Operating current limit

Algorithm

Operating Current Limit on Charge

Operating Current Limit on Charge
$$\Rightarrow$$

$$\int_{t=100}^{t=0, \text{ when } I \le 0 \text{ (discharge)}} I = I, \text{ when } I \ge 0 \text{ (charge)}$$

$$\int_{t=100}^{t} I^2 \cdot dt \le \int_{t=100}^{t} I_{\text{ch_max_continuous}}^2 \cdot dt \quad \text{And, charging current} \le I_{\text{ch_max_peak}}$$

Remark) $I_{ch_max_continuous} = max$ continuous charge current at each temperature

Operating Current Limit on Discharge

$$I = -I, \text{ when } I \le 0 \text{ (discharge)}$$

$$I = I, \text{ when } I > 0 \text{ (charge)}$$

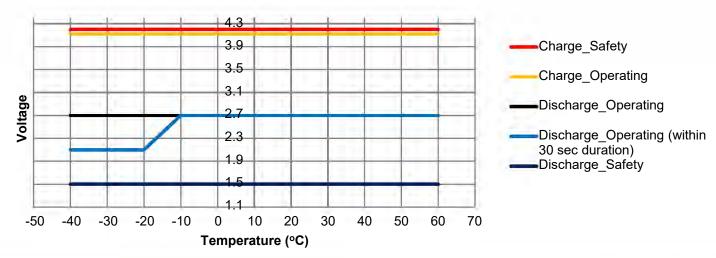
$$\int_{-150}^{t} I^{2} \cdot dt \leq \int_{0}^{150} I_{\text{dch_max_continuous}}^{2} \cdot dt \quad \text{And, discharging current} \leq I_{\text{dch_max_peak}}^{2}$$

Remark) $I_{dch_max_continuous} = max$ continuous discharge current at each temperature

Safety current limit

Charge and Discharge

	Safety Current Limit				
Temperature (°C)	Discharge		Charge		
	I _{max} (safety)	max. allowed duration (msec)	I _{max} (safety)	max. allowed duration (msec)	
60	500	700	360	700	
50	500	700	360	700	
40	500	700	360	700	
35	500	700	360	700	
30	500	700	360	700	
25	500	700	360	700	
20	500	700	360	700	
15	500	700	360	700	
10	500	700	360	700	
5	500	700	360	700	
0	500	700	360	700	
-5	500	700	245	700	
-10	500	700	165	700	
-15	500	700	83	700	
-20	500	700	45	700	
-25	500	700	30	700	
-30	500	700	9.4	700	
-40	500	700	1.8	700	



Operating and safety voltage limit

Charge and Discharge

	Item	Value	Remark
Safety	Charge	4.25 V	
limit	Discharge	1.5 V	
Operating	Charge	4.15 V	
limit	Discharge	2.7 V	2.1 V at below -20°C within 30 sec duration

Operating and Safety Voltage Limit

Operating and safety temperature limit

Operating and storage

	Item	Value	Remark
	Maximum storage	80°C	This is to be ensured in an ambient temperature range (Electrolyte gas generation, OSD deformation vent opening, leakage, etc.)
Safety	Minimum storage	-40°C	This is to be ensured in an ambient temperature range
limit	Maximum operation	80°C	This is to be ensured in a cell core temperature
	Minimum operation	-40°C	This is to be ensured in a cell core temperature
Operation	Maximum operation	60°C	This is to be ensured in a cell core temperature
limit	Minimum operation	-40°C	This is to be ensured in a cell core temperature

